class
RLTaskEnvMethods
- def close(self) -> None
- def current_episode(self, all_info: bool = False) -> dataset.BaseEpisode
- Returns the current episode of the environment.
- def get_done(self, observations)
- def get_info(self, observations)
- def get_reward(self, observations)
- def get_reward_range(self)
- def render(self, mode: str = 'rgb') -> numpy.ndarray
- def reset(self, *args, return_info: bool = False, **kwargs) -> typing.Union[numpy.ndarray, typing.Dict[str, numpy.ndarray], typing.Tuple[typing.Union[numpy.ndarray, typing.Dict[str, numpy.ndarray]], typing.Dict]]
- def seed(self, seed: typing.Optional[int] = None) -> None
- def step(self, *args, **kwargs) -> typing.Tuple[typing.Union[numpy.ndarray, typing.Dict[str, numpy.ndarray]], float, bool, dict]
Special methods
- def __enter__(self)
- def __exit__(self, exc_type, exc_val, exc_tb)
- def __init__(self, config: DictConfig, dataset: typing.Optional[dataset.Dataset] = None)
- def __str__(self)
Properties
- config: DictConfig get
- episodes: typing.List[dataset.Episode] get set
- habitat_env: env.Env get
- np_random: gym.utils.seeding.RandomNumberGenerator get set
- Initializes the np_random field if not done already.
- unwrapped: gym.core.Env get
- Completely unwrap this env.
Data
- metadata = {'render_modes': []}
- reward_range = (-inf, inf)
- spec = None
Method documentation
def habitat. core. environments. RLTaskEnv. current_episode(self,
all_info: bool = False) -> dataset.BaseEpisode
Returns the current episode of the environment.
Parameters | |
---|---|
all_info | If true, all the information in the episode will be provided. Otherwise, only episode_id and scene_id will be included. |
Returns | The BaseEpisode object for the current episode. |
Property documentation
habitat. core. environments. RLTaskEnv. unwrapped: gym.core.Env get
Completely unwrap this env.
- Returns:
- gym.Env: The base non-wrapped gym.Env instance