
HomeRobot: Open-Vocabulary Mobile Manipulation
Sriram Yenamandra∗1 Arun Ramachandran∗1 Karmesh Yadav∗1,2 Austin Wang1

Mukul Khanna1 Theophile Gervet2,3 Tsung-Yen Yang2 Vidhi Jain3

Alexander William Clegg2 John Turner2 Zsolt Kira1 Manolis Savva4

Angel Chang4 Devendra Singh Chaplot2 Dhruv Batra1,2 Roozbeh Mottaghi2

Yonatan Bisk2,3 Chris Paxton2

1Georgia Tech 2FAIR, Meta AI 3Carnegie Mellon 4Simon Fraser
homerobot-info@googlegroups.com

Abstract: HomeRobot (noun): An affordable compliant robot that navigates

homes and manipulates a wide range of objects in order to complete everyday tasks.

Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any

object in any unseen environment, and placing it in a commanded location. This is

a foundational challenge for robots to be useful assistants in human environments,

because it involves tackling sub-problems from across robotics: perception,

language understanding, navigation, and manipulation are all essential to OVMM.

In addition, integration of the solutions to these sub-problems poses its own

substantial challenges. To drive research in this area, we introduce the HomeRobot

OVMM benchmark, where an agent navigates household environments to

grasp novel objects and place them on target receptacles. HomeRobot has two

components: a simulation component, which uses a large and diverse curated

object set in new, high-quality multi-room home environments; and a real-world

component, providing a software stack for the low-cost Hello Robot Stretch to

encourage replication of real-world experiments across labs. We implement both

reinforcement learning and heuristic (model-based) baselines and show evidence

of sim-to-real transfer. Our baselines achieve a 20% success rate in the real world;

our experiments identify ways future research work improve performance. See

videos on our website: https://home-robot-ovmm.github.io/.

Keywords: Sim-to-real, benchmarking robot learning, mobile manipulation

1 Introduction

The aspiration to develop household robotic assistants has served as a north star for roboticists since

the beginning of the field. The pursuit of this vision has spawned multiple areas of research within

robotics from vision to manipulation, and has led to increasingly complex tasks and benchmarks.

A useful household assistant requires creating a capable mobile manipulator that understands a wide

variety of objects, how to interact with the environment, and how to intelligently explore a world

with limited sensing. This has separately motivated research in diverse areas like navigation [1, 2],

service robotics [3±5], language understanding [6, 7] and task and motion planning [8]. We refer

to this guiding problem as Open-Vocabulary Mobile Manipulation (OVMM): a useful robot will

be able to find and move arbitrary objects from place to place in an arbitrary home.

Prior work does not tackle mobile manipulation in large, continuous, real-world environments. Instead,

it generally simplifies the setting significantly, e.g. by using discrete action spaces, limited object

sets, or small, single-room environments that are easily explored. However, recent developments

tying language and vision have enabled robots to generalize beyond specific categories [9±13],

often through multi-modal models such as CLIP [14]. Further, comparison across methods has

remained difficult and reproduction of results across labs impossible, since many aspects of the

settings (environments, and robots) have not been standardized. This is especially important now, as

homerobot-info@googlegroups.com
https://home-robot-ovmm.github.io/

Chair

Toy Animal

Table

Find Object on Start Receptacle Pick Object from Start Receptacle Find Goal Receptacle Place Object on Goal Receptacle

Drawer

Pitcher

Serving Cart

Move toy animal from chair to table

Move pitcher from drawer to serving cart

Figure 1: Open-Vocabulary Mobile Manipulation requires agents to search for a previously unseen
object at a particular location, and move it to the correct receptacle.

a new wave of research projects have begun to show promising results in complex, open-vocabulary

navigation [9, 15, 11, 12, 16] and manipulation [17, 10, 18] ± again on a wide range of robots and

settings, and still limited to single-room environments. Clearly, now is the time when we need a

common platform and benchmarks to drive the field forward.

In this work, we define Open-Vocabulary Mobile Manipulation as a key task for in-home robotics and

provide benchmarks and infrastructure, both in simulation and the real world, to build and evaluate

full-stack integrated mobile manipulation systems, in a wide variety of human-centric environments,

with open object sets. Our benchmark will further reproducible research in this setting, and the fact

that we support arbitrary objects will enable the results to be deployed in a variety of real-world

environments.

OVMM: We propose the first reproducible mobile-manipulation benchmark for the real world,

with an associated simulation component. In simulation, we use a dataset of 200 human-authored

interactive 3D scenes [19] instantiated in the AI Habitat simulator [20, 21] to create a large number

of challenging, multi-room OVMM problems with a wide variety of objects curated from a variety of

sources. Some of these objects’ categories have been seen during training; others have not. In the real

world, we create an equivalent benchmark, also with a mix of seen and unseen object categories, in a

controlled apartment environment. We use the Hello Robot Stretch [22]: an affordable and compliant

platform for household and social robotics that is already in use at over 40 universities and industry

research labs. Fig. 1 shows instantiations of our OVMM task in both the real-world benchmark and

in simulation. We have a controlled real-world test environment, and plan to run the real world

benchmark yearly to assess progress on this challenging problem. Real-world benchmarking will be

run as a part of the NeurIPS 2023 HomeRobot OVMM competition [23].

HomeRobot: We also propose HomeRobot,1 a software framework to facilitate extensive bench-

marking in both simulated and physical environments. It comprises identical APIs that are imple-

mented across both settings, enabling researchers to conduct experiments that can be replicated in

both simulated and real-world environments. Table 1 compares OVMM+HomeRobot to the literature.

The HomeRobot library also supports a number of sub-tasks, including manipulation learning [24],

navigation [25], and object-goal navigation [2].

In this paper, we use HomeRobot to compare two families of approaches: a heuristic solution, using

a motion planner shown to work for real-world object search [2], and a reinforcement learning (RL)

1https://github.com/facebookresearch/home-robot

2

https://github.com/facebookresearch/home-robot

Object Continuous Robotics Open
Scenes Cats Inst. Actions Sim2Real Stack Licensing Manipulation

Room Rearrangement [27] 120 118 118 ✖ ✖ ✖ ✔ ✖

Habitat ObjectNav Challenge[28] 216 6 7,599 ✔ ✖ ✖ ✔ ✖

TDW-Transport [29] 15 50 112 ✖ ✖ ✖ ✓ ✓

VirtualHome [30] 6 308 1,066 ✖ ✖ ✖ ✔ ✓

ALFRED [6] 120 84 84 ✖ ✖ ✖ ✔ ✓

Habitat 2.0 HAB [21] 105 20 20 ✔ ✖ ✖ ✔ ✔

ProcTHOR [31] 10,000 108 1,633 ✖ ✖ ✖ ✔ ✔

RoboTHOR [32] 75 43 731 ✖ ✔ ✖ ✔ ✖

Behavior-1K [33] 50 1,265 5,215 ✔ ✔ ✖ ✖ ✓

ManiSkill-2 [34] 1 2,000 2,000 ✔ ✓ ✖ ✓ ✔

OVMM + HomeRobot 200 150 7,892 ✔ ✔ ✔ ✔ ✔

Table 1: Comparisons of our proposed benchmark with prior work. We provide a large number of
environments with a continuous action space, and uniquely provide a real-world robotics stack with
demonstrated sim-to-real capabilities, allowing others to reproduce and deploy their own solutions.
Additional nuances in footnote3. ✓Partial availability ✖Not available ✔Capability available

solution, which learns how to navigate to objects given depth and predicted object segmentation. We

use the open-vocabulary object detector DETIC [26] to provide object segmentation for both the

heuristic and RL policies. We observe that while the RL methods moved to the object more efficiently

if an object was visible, the heuristic planner was better at long-horizon exploration. We also see

a substantial drop in performance in switching from from ground-truth segmentation to DETIC

segmentation. This highlights the importance of the OVMM challenge, as only through viewing the

problem holistically - integrating perception, planning, and action - can we build general-purpose

home assistants.

To summarize, in this paper, we define Open-Vocabulary Mobile Manipulation as a new, crucial

task for the robotics community in Sec. 3. We provide a new simulation environment, with multiple,

multi-room interactive environments and a wide range of objects. We implement a robotics library

called HomeRobot which provides baseline policies implementing this in both the simulation and the

real world. We describe a real-world benchmark in a controlled environment, and show how current

baselines perform in simulation and in the real world under different conditions. We plan to initially

run this real-world benchmark as a Neurips 2023 competition [23].

2 Related Work

We discuss work related to challenges and reproducibility of robotics research in more detail, but

continue the discussion of datasets and simulators in Appendix A.

Challenges. There have been several challenges aiming to benchmark robotic systems at different

tasks. These challenges provided a great testbed for ranking different systems. However, in most

of the challenges (e.g., [35±38, 3]), the participants create their own robotic platform making a fair

comparison of the algorithms difficult. There are also challenges where the organizers provide the

robotic platform to the participants (e.g., [39]). However, changing the task during the periodic

evaluations made it difficult to track progress over time. Our aim is to have a real world benchmark

using a standard hardware that is sustainable at least for a few years.

Reproducibility of robotics research. Standardized robotics benchmarks have been pursued for a

long time, often by open-sourcing robot designs or introducing low-cost robots [40±48]. However, the

environments in which these robots are used vary dramatically, leading to evaluation of components

(e.g., object navigation, SLAM) in isolation, instead of as components of a larger system that

may not benefit from those changes. The HomeRobot stack enables end-to-end benchmarking of

individual components by providing a full robotics stack, with multiple implementations of different

3ALFRED uses object masks for interaction. ObjectNav uses scans, not full object meshes. ProcThor scenes
are procedurally generated, this has the benefit that the potential number of environments is unbounded.

3

Figure 2: A low-cost home robot performing tasks in both a simulated and a real-world environment.
We provide both (1) challenging simulated tasks, wherein a mobile manipulator robot must find and
grasp multiple seen and unseen objects, and (2) a corresponding real-world robotics stack to allow
others to reproduce this research and evaluation to produce useful home robot assistants.

sub-modules. The simplicity helps move beyond standardized sets of objects (e.g., [49±51]) to a

common set of robots, objects, and environments.

Real World Benchmarks. RoboTHOR [32] provides a common set of scenes and objects for

benchmarking navigation. RB2 [52] ranks different manipulation algorithms in a local setting.

TOTO [53] takes a step further by providing a training dataset and running the experiments for

the users. However, training and testing happen in the same environments and are limited to

tabletop manipulation. Finally, the NIST Task Board [54] is a successful challenge for fine-grained

manipulation skills [55], also limited to a tabletop context. Kadian et al. [56] propose the Habitat-

PyRobot bridge (HaPy) to allow real-world testing on the locobot robot; their framework is limited

to navigation, and doesn’t provide a generally-useful robotics stack with visualizations, debugging,

motion planners, tooling, etc.

3 Open-Vocabulary Mobile Manipulation

Formally, our task is set up as instructions of the form: ªMove (object) from the

(start_receptacle) to the (goal_receptacle).º The object is a small and manipulable

household object (e.g., a cup, stuffed toy, or box). By contrast, start_receptacle and

goal_receptacle are large pieces of furniture, which have surfaces upon which objects can be

placed. The robot is placed in an unknown single-floor home environment - such as an apartment - and

must, given the language names of start_receptacle, object, and goal_receptacle, pick up

an object that is known to be on a start_receptacle and move it to any valid goal_receptacle.

start_receptacle is always available, to help agents know where to look for the object.

The agent is successful if the specified object is indeed moved from a start_receptacle on

which it began the episode, to any valid goal_receptacle. We give partial credit for each step

the robot accomplishes: finding the start_receptacle with the object, picking up the object,

finding the goal_receptacle, and placing the object on the goal_receptacle. There can be

multiple valid objects that satisfy each query.

Crucially, we need and develop both (1) a simulation version of this OVMM problem, for

reproducibility, training, and fast iteration, and (2) a real-robot stack with a corresponding real-world

benchmark. We compare the two in Fig. 2. Our simulated environments allow for varied, long-horizon

task experimentation; our real-world HomeRobot stack allows for experimenting with real data, and

we design a set of real-world tests to evaluate the performance of our learned and heuristic baselines.

The Robot. We use the Hello Robot Stretch [22] with DexWrist as the mobile manipulation platform,

because it (1) is relatively affordable at $25, 000 USD, (2) offers 6 DoF manipulation, and (3) is

human safe and human-sized, making it safe to test in labs [24, 11] and homes [2], and can reach

most places a human would expect a robot to go. For a breakdown on hardware choices, see Sec. G.1.

4

Objects. These are split into seen vs. unseen categories and instances. In particular, at test time we

look at unseen instances of seen or unseen categories; i.e. no seen manipulable object from training

appears during evaluation. Agents must pick and place any requested object.

Receptacles. We include common household receptables (e.g. tables, chairs, sofas) in our dataset;

unlike with manipulable objects, all possible receptacle categories are seen during training.

Scenes. We have both a simulated scene dataset, and a fixed set of real-world scenes with specific

furniture arrangements and objects. In both simulated and real scenes, we use a mixture of objects

from previously-seen categories, and objects from unseen categories as the goal object for our

Open-Vocabulary Mobile Manipulation task. We hold out validation and test scenes, which do not

appear in the training data; while some receptacles may re-appear, they will be at previously-unseen

locations, and target object instances will be unseen.

Scoring. We compute success for each stage: finding object on start_receptacle, successfully

picking up object, finding goal_receptacle, and placing object on the goal. Overall success

is true if all four stages were accomplished. We also compute a single partial success metric as

a tie-breaker, in which agents receive 1 point for each successive stage accomplished per episode,

normalized by the number of stages. More details in Appendix B.

3.1 Simulation Dataset

Figure 3: HSSD scenes.

The Habitat Synthetic Scenes Dataset (HSSD) [19] consists of 200+

human authored 3D home scenes containing over 18k individual

models of real-world objects. Like most real houses, these scenes

are cluttered with furniture and other objects placed into realistic

architectural layouts, making navigation and manipulation similarly

difficult to the real world. We used a subset of HSSD [19] consisting

of 60 scenes (e.g. Fig. 4) for which additional metadata and simu-

lation structures were authored to support rearrangement 4. For our

experiments these are divided into train, validation, and test splits of

38, 12, and 10 scenes each, following the splits in the original HSSD

paper [19].

Objects and Receptacles. We aggregate objects from AI2-

Thor [57], Amazon-Berkeley Objects [58], Google Scanned Ob-

jects [59] and the HSSD [19] dataset to create a large and diverse

dataset of real-world robot problems. In total, we annotated 2,535

objects from 129 total categories.We identified 21 different categories of receptacle which appear in

the HSSD dataset [19].

Figure 4: Ex-
ample (object free)
top-down view from
HSSD [19]. See App.
Figs. 8 & 10 for
navigation and view-
points.

We construct our final set of furniture receptacle objects by first automat-

ically labeling stable areas on top of receptacles, then manually refining

and processing these in order to remove invalid or inaccessible receptacles.

In addition, collision proxy meshes were automatically generated and in

many cases manually corrected to support physically accurate procedural

placement of object arrangements.

Episode Generation. We generate episodes consisting of varying object

arrangements and particular values for object, start_receptacle, and

goal_receptacle, which allow our agent to successfully move about

and interact with the world. In the case of Open-Vocabulary Mobile

Manipulation, this task is particularly challenging because we have to place

objects in locations which are navigable, meaning that the robot can get to

them, reachable, meaning its arm can make it to these locations, and from which we can navigate

to a navigable, reachable goal receptacle. For full episode generation details see App. C.2.

4All 200+ scenes with rearrangement support will be released at the time of final submission.

5

Figure 5: HomeRobot is a simple, easy-to-set-up library which works in multiple environments
and requires only relatively affordable hardware. Computationally intensive operations are performed
on a desktop PC with a GPU, and a dedicated consumer-grade router provides a network interface to
a robot running low-level control and SLAM.

SC, SI SC, UI UC, UI Total

Cats 85 64 44 129
Insts 1,363 748 424 2,535

Table 2: # of objects in each split:
(S)een, (U)nseen, (I)nstance, and
(C)ategory in simulation.

Training and Validation Split. Training episodes consist of

objects from the large pool of seen instances of seen categories

(SC,SI). In contrast, we use unseen instances of seen object

categories (SC,UI) and unseen instances of unseen categories

(UC,UI) for validation and test episodes. Two-thirds of the

categories were randomly designated as seen, and two-thirds

of the objects in the seen category were randomly marked as

seen instances. Splits are in Table 2 and the distribution of objects across categories is in App. Fig. 6.

3.2 Real World Benchmark

Real-world experiments are performed in a controlled 3-room apartment environment, with a sofa,

kitchen table, counter with bar, and TV stand, among other features. We documented the positioning

of various objects and the robot start position, in order to ensure reproducibility across trials. Images

of various layouts of the test apartment are included in Fig. 2, and task execution is shown in Fig. 14.

During real-world testing, we selected a pool of object instances that did not appear during simulation

training, but split between classes that did and did not appear in training. We used eight different

categories, of which five were seen during training (Cup, Bowl, Stuffed Toy, Medicine Bottle, and Toy

Animal), and three were not (Rubik’s cube, Toy Drill, and Lemon). We performed 20 experiments on

the Stretch robot for each of our two different baselines and with seven different receptacle classes:

Cabinet, Chair, Couch, Counter, Sink, Stool, Table.

4 The HomeRobot Library

To facilitate research on these challenging problems, we open-source the HomeRobot library, which

implements navigation and manipulation capabilities supporting Hello Robot’s Stretch [22]. In our

setup, it is assumed that users have access to a mobile manipulator and a NVIDIA GPU powered

workstation. The mobile manipulator runs the low-level controller and the localization module, while

the desktop runs the high-level perception and planning stack(Fig. 5). The robot and desktop are

connected using an off-the-shelf router5. HomeRobot is designed as a user-friendly software stack,

enabling quick setup of the robot for immediate testing. The key features of our stack include:

Transferability: Unified state and action spaces between simulation & real-world settings for each

task, providing an easy way to control a robot with either high-level action spaces (e.g., pre-made

grasping policies) or low-level continuous joint control.

5Our experiments used a NetGear Nighthawk router.

6

Simulation Results Skill Partial Success Rates Overall
Success Rate

Partial
Success MetricPerception Navigation Gaze Place FindObj Pick FindRec

Ground Truth Heuristic None Heuristic 46.2 39.5 18.6 5.9 27.5
Heuristic RL RL 47.2 41.7 27.1 11.0 31.7

RL None Heuristic 55.1 41.9 26.4 5.2 32.1
RL RL RL 55.7 50.2 35.2 11.6 38.2

DETIC [26] Heuristic None Heuristic 23.3 11.5 3.0 0.3 9.5
Heuristic RL RL 24.8 9.5 5.0 0.2 9.9

RL None Heuristic 19.9 10.2 4.4 0.6 8.8
RL RL RL 19.8 11.8 6.3 0.8 9.7

Table 3: We observe that one of the main causes of failures for our baseline systems was perception
failures; ground-truth performance is notably higher. We also see that both RL and heuristic skills
struggled navigating tightly constrained multi-room environments and successfully placing objects.

Modularity: Perception and action components to support high-level states (e.g. semantic maps,

segmented point clouds) and high-level actions (e.g. go to goal position, pick up target object).

Baseline Agents: Policies that use these capabilities to provide basic functionality for OVMM.

4.1 Baseline Agent Implementation

Crucially, we provide baselines and tools that enable researchers to effectively explore the Open-

Vocabulary Mobile Manipulation task. We include two types of baselines in HomeRobot: a heuristic

baseline, in which we use a well known motion planning technique [2] and simple rules to execute

grasping and manipulation actions; and a reinforcement learning baseline, where we learn exploration

and manipulation skills using an off-the-self policy learning algorithm, DDPPO [60]. In addition, we

have implemented example projects from several recently released papers, testing different capabilities

such as object-goal navigation [1, 2], skill learning [24], continual learning [61], and image instance

navigation [25]. Due to the challenging, long-horizon nature of the task, we implement a high-level

policy called OVMMAgent which calls a sequence of skills to accomplish a task. We breakdown our

agents into four skills:

FindObj/FindRec: Locate an object on a start_receptacle; or find a goal_receptacle.

Gaze: Move close enough to an object to grasp it, and orient head to get a good view of the object.

The goal of the gaze action is to improve the success rate of grasping.

Grasp: Pick up the object. We provide a high-level action for this, since we do not simulate the

gripper interaction in Habitat. However, our library is compatible with a range of learned grasping

skills and supports learning policies for grasping.

Place: Move to a location in the environment and place the object on top of the goal_receptacle.

Heuristic. We implement a version using only off-the-shelf learned models and heuristics, noting

that previous work in mobile manipulation has used these models to great effect (e.g. [62]). Here,

DETIC [63] provides masks for an open-vocabulary set of objects as appropriate for each skill.

The start_receptacle, object,goal_receptacle for each episode is given. Fig. 14 shows an

example of the heuristic navigation and place policy being executed in the real world (App. D).

RL. We train the four skills in our modified version of Habitat [21] as policies which predict actions

given depth, ground truth semantic segmentation and priopreceptive sensors (i.e. joints, gripper state),

using DDPPO [60]. While RGB is available in our simulation, our baseline policies do not directly

utilize it; instead, they rely on predicted segmentation from Detic [26] at test time.

5 Results

We first evaluate the two baselines in our simulated benchmark, followed by evaluation in a real-

world, held-out test apartment. These results highlight the significance of OVMM as a challenging

new benchmark, encompassing numerous essential challenges that arise when deploying robots in

real-world environments.

7

Real World FindObj Pick FindRec Overall Success

Heuristic Only 0.70 0.35 0.30 0.15
RL Only 0.70 0.45 0.30 0.20

Table 4: Results for heuristic and RL baseline in the real world on the OVMM task. In both cases,
the grasping action is executed as described in Sec. 4; but initial conditions of the robot such as its
position relative to the object or to other obstacles may cause various failures.

We break down the results by sub-task in addition to reporting the overall performance in Tables 3

and 4. The columns FindObj, Pick and FindRec refer to the first 3 phases of the task mentioned in

the scoring section (Sec. 3), and succeeding in the final Place phase leads to a successful episode.

Simulation. We evaluate the baselines on held-out scenes, with objects from unseen instances of

seen classes, and unseen instances of unseen classes, as described in Sec. 3.1. We show results with

two different perception systems: Ground Truth segmentation, where we use the segmentation

input directly from the simulator, and DETIC segmentation [26], where the RGB images from the

simulator are passed through DETIC, an open-vocabulary object detector.

We report results in Table 3 broken down by skill. The results show that RL policies outperformed

heuristic methods for both navigation and placement tasks. However, all policies experienced a

decline in performance when the perception is changed from ground truth to DETIC. Notably,

heuristic policies exhibited less degradation in performance compared to RL policies under DETIC

perception. With DETIC perception, the heuristic FindObj policy outperforms RL. We attribute this

to the heuristic policy’s ability to incorporate noisy predictions by constructing a 2D semantic map,

which proves advantageous in handling small objects that are prone to misclassification. Furthermore,

we observed that the learned gaze policy generally led to improved pick performance, except when

used in combination with the Heuristic nav with DETIC perception. For additional information,

example simulation trajectories can be found in Appendix Figure 16, and results comparing seen

versus unseen categories are discussed in Appendix F.2.

Real World. Finally, we conducted a series of experiments in a real-world held-out apartment setting.

We performed a total of 20 episodes, utilizing a combination of seen and unseen object classes as our

target objects. The results of these experiments are presented in Table 4. RL performed slightly better

than the Heuristic baseline, successfully completing 1 extra episode and achieving a success rate of

20%. This difference primarily stemmed from the pick and place sub-tasks. In the pick task, the RL

Gaze skill plays a crucial role in achieving better alignment between the agent and the target object,

which led to more successful grasping. Similarly, the RL place skill demonstrated more precision,

ensuring that the object stayed closer to the surface of the receptacle.

Both simulation and real-world results show the baselines are promising, but insufficient, for Open-

Vocabulary Mobile Manipulation. DETIC [26] caused many failures due to misclassification, both in

simulation and the real world. Further, RL navigation was on par or better than heuristic policies in

both sim and real. Although our RL place policy performed better in sim than heuristic place, it needs

further improvement in the real world. Gaining the advantages of webscale pretrained vision-language

models like DETIC, but tuned to our agents may be crucial for improving performance.

6 Limitations

Our benchmark has a few key limitations: (1) Due to simulation limitations, we don’t physically

simulate grasping in the first version, which is why we provide a separate policy for this in the

real world. Grasping is a well-studied problem [64±66], but simulations that train useful real-world

grasp systems require special consideration. (2) We consider full natural language queries out-of-

scope. Finally, (3) we do not implement many motion planners in HomeRobot (see Sec. D.2), or

task-and-motion-planning with replanning, as would be ideal [67].

8

7 Conclusions and Future Work

We proposed a combined simulation and real-world benchmark to enable progress on the important

problem of Open-Vocabulary Mobile Manipulation. We ran extensive experiments showing promising

simulation and real-world results from two baselines: a heuristic baseline based on a state-of-the-art

motion planner [2] and a reinforcement learning baseline trained with DDPPO [60]. In the future, we

hope to improve the complexity of the problem space, adding more complex natural language and

multi-step commands instead of pick-and-place, and provide end-to-end baselines instead of modular

policies. Various proposed solutions for open-vocabulary navigation [9, 11, 12] and manipulation of

unknown objects [10, 13, 18, 17] suggest possible ways of improving performance.

8 Acknowledgements

We would like to thank Andrew Szot for help with Habitat policy training, Santhosh Kumar Ra-

makrishnan with help on Stretch Object navigation in simulation and on the real robot, and Eric

Undersander for help with improving Habitat rendering. Priyam Parashar, Xiaohan Zhang, and Jay

Vakil helped with testing on Stretch and real-world scene setup.

We would also like to thank the whole Hello Robot team, but especially Binit Shah and Blaine Mat-

ulevich for their help with the robots, and Aaron Edsinger and Charlie Kemp for helpful discussions.

References

[1] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. Toshev, and

E. Wijmans. Objectnav revisited: On evaluation of embodied agents navigating to objects.

arXiv, 2020.

[2] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real

world. arXiv, 2022.

[3] T. Wisspeintner, T. Van Der Zant, L. Iocchi, and S. Schiffer. Robocup@ home: Scientific

competition and benchmarking for domestic service robots. Interaction Studies, 2009.

[4] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, L. Mösenlech-

ner, W. Meeussen, and S. Holzer. Towards autonomous robotic butlers: Lessons learned with

the pr2. In ICRA, 2011.

[5] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and

S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial intelligence,

1999.

[6] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and

D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In

CVPR, 2020.

[7] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating

household activities via programs. In CVPR, 2018.

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.

Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous

Systems, 4:265±293, 2021.

[9] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S. Ryoo, A. Stone, and D. Kappler.

Open-vocabulary queryable scene representations for real world planning. arXiv, 2022.

[10] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, B. Zitkovich,

F. Xia, C. Finn, et al. Open-world object manipulation using pre-trained vision-language

models. arXiv, 2023.

9

[11] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam. Clip-fields: Weakly

supervised semantic fields for robotic memory. arXiv, 2022.

[12] B. Bolte, A. Wang, J. Yang, M. Mukadam, M. Kalakrishnan, and C. Paxton. Usa-net: Unified

semantic and affordance representations for robot memory. arXiv, 2023.

[13] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon

manipulation of unknown objects via task and motion planning with estimated affordances. In

ICRA, 2022.

[14] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-

sion. In ICML, 2021.

[15] K. M. Jatavallabhula, A. Kuwajerwala, Q. Gu, M. Omama, T. Chen, S. Li, G. Iyer, S. Saryazdi,

N. Keetha, A. Tewari, et al. Conceptfusion: Open-set multimodal 3d mapping. arXiv, 2023.

[16] J. Krantz, E. Wijmans, A. Majundar, D. Batra, and S. Lee. Beyond the nav-graph: Vision

and language navigation in continuous environments. In European Conference on Computer

Vision (ECCV), 2020.

[17] W. Liu, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Object-centric diffusion for

semantic rearrangement of novel objects. arXiv, 2022.

[18] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv, 2023.

[19] M. Khanna*, Y. Mao*, H. Jiang, S. Haresh, B. Schacklett, D. Batra, A. Clegg, E. Undersander,

A. X. Chang, and M. Savva. Habitat Synthetic Scenes Dataset: An Analysis of 3D Scene Scale

and Realism Tradeoffs for ObjectGoal Navigation. arXiv, 2023.

[20] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,

J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. ICCV,

2019.

[21] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam,

D. S. Chaplot, O. Maksymets, et al. Habitat 2.0: Training home assistants to rearrange their

habitat. In NeurIPS, 2021.

[22] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The design of stretch: A compact,

lightweight mobile manipulator for indoor human environments. In ICRA, 2022.

[23] S. Yenamandra, A. Ramachandran, M. Khanna, K. Yadav, D. S. Chaplot, G. Chhablani,

A. Clegg, T. Gervet, V. Jain, R. Partsey, R. Ramrakhya, A. Szot, T.-Y. Yang, A. Edsinger,

C. Kemp, B. Shah, Z. Kira, D. Batra, R. Mottaghi, Y. Bisk, , and C. Paxton. Homerobot open

vocab mobile manipulation challenge 2023. https://aihabitat.org/challenge/2023_

homerobot_ovmm/, 2023.

[24] P. Parashar, J. Vakil, S. Powers, and C. Paxton. Spatial-language attention policies for efficient

robot learning. arXiv, 2023.

[25] J. Krantz, T. Gervet, K. Yadav, A. Wang, C. Paxton, R. Mottaghi, D. Batra, J. Malik, S. Lee,

and D. S. Chaplot. Navigating to objects specified by images. arXiv, 2023.

[26] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes

using image-level supervision. In ECCV, 2022.

[27] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi. Visual room rearrangement. In CVPR,

2021.

10

https://aihabitat.org/challenge/2023_homerobot_ovmm/
https://aihabitat.org/challenge/2023_homerobot_ovmm/

[28] K. Yadav, J. Krantz, R. Ramrakhya, S. K. Ramakrishnan, J. Yang, A. Wang, J. Turner,

A. Gokaslan, V.-P. Berges, R. Mootaghi, O. Maksymets, A. X. Chang, M. Savva, A. Clegg, D. S.

Chaplot, and D. Batra. Habitat challenge 2023. https://aihabitat.org/challenge/

2023/, 2023.

[29] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius,

A. Bhandwaldar, N. Haber, et al. Threedworld: A platform for interactive multi-modal physical

simulation. NeurIPS Datasets and Benchmarks Track, 2021.

[30] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating

household activities via programs. In CVPR, 2018.

[31] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador, K. Ehsani, W. Han, E. Kolve,

A. Farhadi, A. Kembhavi, and R. Mottaghi. Procthor: Large-scale embodied ai using procedural

generation. In NeurIPS, 2022.

[32] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,

E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi. RoboTHOR: An Open

Simulation-to-Real Embodied AI Platform. In CVPR, 2020.

[33] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martín-Martín, C. Wang, G. Levine,

M. Lingelbach, J. Sun, et al. Behavior-1k: A benchmark for embodied ai with 1,000 everyday

activities and realistic simulation. In CoRL, 2023.

[34] T. Mu, Z. Ling, F. Xiang, D. C. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:

Generalizable manipulation skill benchmark with large-scale demonstrations. In NeurIPS

Datasets and Benchmarks Track, 2021.

[35] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and

C. Orlowski. The darpa robotics challenge finals: Results and perspectives. The DARPA

Robotics Challenge Finals: Humanoid Robots To The Rescue, 2018.

[36] G. Seetharaman, A. Lakhotia, and E. P. Blasch. Unmanned vehicles come of age: The darpa

grand challenge. Computer, 2006.

[37] M. Buehler, K. Iagnemma, and S. Singh. The DARPA urban challenge: autonomous vehicles

in city traffic. Springer Berlin, Heidelberg, 2009.

[38] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez,

J. M. Romano, and P. R. Wurman. Analysis and observations from the first amazon picking

challenge. IEEE Transactions on Automation Science and Engineering, 2016.

[39] L. D. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan. The darpa lagr program:

Goals, challenges, methodology, and phase i results. Journal of Field Robotics, 2006.

[40] M. Müller and V. Koltun. Openbot: Turning smartphones into robots. In ICRA, 2021.

[41] N. Kau, A. Schultz, N. Ferrante, and P. Slade. Stanford doggo: An open-source, quasi-direct-

drive quadruped. In ICRA, 2019.

[42] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich, M. Naveau, V. Berenz,

S. Heim, F. Widmaier, J. Fiene, A. Badri-Spröwitz, and L. Righetti. An open torque-controlled

modular robot architecture for legged locomotion research. IEEE Robotics and Automation

Letters, 2019.

[43] B. Yang, J. Zhang, V. H. Pong, S. Levine, and D. Jayaraman. Replab: A reproducible low-cost

arm benchmark platform for robotic learning. arXiv, 2019.

11

https://aihabitat.org/challenge/2023/
https://aihabitat.org/challenge/2023/

[44] D. V. Gealy, S. McKinley, B. Yi, P. Wu, P. R. Downey, G. Balke, A. Zhao, M. Guo, R. Thomas-

son, A. Sinclair, P. Cuellar, Z. McCarthy, and P. Abbeel. Quasi-direct drive for low-cost

compliant robotic manipulation. In ICRA, 2019.

[45] M. Wüthrich, F. Widmaier, F. Grimminger, S. Joshi, V. Agrawal, B. Hammoud, M. Khadiv,

M. Bogdanovic, V. Berenz, J. Viereck, M. Naveau, L. Righetti, B. Schölkopf, and S. Bauer.

Trifinger: An open-source robot for learning dexterity. In CoRL, 2020.

[46] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar. ROBEL:

RObotics BEnchmarks for Learning with low-cost robots. In CoRL, 2019.

[47] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. K. Gupta. Pyrobot:

An open-source robotics framework for research and benchmarking. arXiv, 2019.

[48] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cáp, Y. F. Chen, C. Choi, J. Dusek,

Y. Fang, D. Hoehener, S. Liu, M. M. Novitzky, I. F. Okuyama, J. Pazis, G. Rosman, V. Varric-

chio, H.-C. Wang, D. S. Yershov, H. Zhao, M. R. Benjamin, C. Carr, M. T. Zuber, S. Karaman,

E. Frazzoli, D. D. Vecchio, D. Rus, J. P. How, J. J. Leonard, and A. Censi. Duckietown: An

open, inexpensive and flexible platform for autonomy education and research. In ICRA, 2017.

[49] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and

model set: Towards common benchmarks for manipulation research. In ICRA, 2015.

[50] D. Morrison, P. Corke, and J. Leitner. Egad! an evolved grasping analysis dataset for diversity

and reproducibility in robotic manipulation. IEEE Robotics and Automation Letters, 2020.

[51] B. Yang, P. E. Lancaster, S. S. Srinivasa, and J. R. Smith. Benchmarking robot manipulation

with the rubik’s cube. IEEE Robotics and Automation Letters, 2020.

[52] S. Dasari, J. Wang, J. Hong, S. Bahl, Y. Lin, A. S. Wang, A. Thankaraj, K. S. Chahal, B. Çalli,

S. Gupta, D. Held, L. Pinto, D. Pathak, V. Kumar, and A. Gupta. Rb2: Robotic manipulation

benchmarking with a twist. arXiv, 2022.

[53] G. Zhou, V. Dean, M. K. Srirama, A. Rajeswaran, J. Pari, K. B. Hatch, A. Jain, T. Yu, P. Abbeel,

L. Pinto, C. Finn, and A. Gupta. Train offline, test online: A real robot learning benchmark.

arXiv, 2022.

[54] K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokoko-

hji. Benchmarking protocols for evaluating small parts robotic assembly systems. IEEE

Robotics and Automation Letters, 2020.

[55] W. Lian, T. Kelch, D. Holz, A. Norton, and S. Schaal. Benchmarking off-the-shelf solutions to

robotic assembly tasks. In IROS, 2021.

[56] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and

D. Batra. Are we making real progress in simulated environments? measuring the sim2real

gap in embodied visual navigation. arXiv, 2019.

[57] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,

A. Gupta, and A. Farhadi. AI2-THOR: an interactive 3d environment for visual AI. arXiv,

2017.

[58] J. Collins, S. Goel, A. Luthra, L. Xu, K. Deng, X. Zhang, T. F. Y. Vicente, H. Arora, T. Diderik-

sen, M. Guillaumin, et al. Abo: Dataset and benchmarks for real-world 3d object understanding.

In CVPR, 2022.

[59] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and

V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household items.

In ICRA, 2022.

12

[60] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. Dd-ppo:

Learning near-perfect pointgoal navigators from 2.5 billion frames. In ICLR, 2019.

[61] S. Powers, A. Gupta, and C. Paxton. Evaluating continual learning on a home robot, 2023.

[62] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and

T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv,

2023.

[63] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnification: Learning view

synthesis using multiplane images. SIGGRAPH, 2018.

[64] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof

grasp generation in cluttered scenes. In ICRA, 2021.

[65] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-dof grasping for target-driven

object manipulation in clutter. In ICRA, 2020.

[66] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for

general object grasping. In CVPR, 2020.

[67] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in

belief space for partially observable task and motion problems. In ICRA, 2020.

[68] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In CVPR, 2009.

[69] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In ICLR, 2019.

[70] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical common-

sense in natural language. In AAAI, 2020.

[71] M. Sap, H. Rashkin, D. Chen, R. LeBras, and Y. Choi. SocialIQA: Commonsense reasoning

about social interactions. In EMNLP, 2019.

[72] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really

finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, 2019.

[73] S. Keisuke, L. B. Ronan, B. Chandra, and C. Yejin. Winogrande: An adversarial winograd

schema challenge at scale. In AAAI, 2019.

[74] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

Microsoft coco: Common objects in context. In ECCV, 2014.

[75] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine

comprehension of text. In EMNLP, 2016.

[76] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700

robot hours. In ICRA, 2016.

[77] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination

for robotic grasping with deep learning and large-scale data collection. IJRR, 2018.

[78] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-

ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.

Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,

S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,

P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,

M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.

In CoRL, 2022.

13

[79] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,

E. Orbay, S. Savarese, and L. Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill

learning through imitation. In CoRL, 2018.

[80] P. Sharma, L. Mohan, L. Pinto, and A. K. Gupta. Multiple interactions made easy (mime):

Large scale demonstrations data for imitation. In CoRL, 2018.

[81] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.

Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp

metrics. arXiv, 2017.

[82] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and

C. Finn. Robonet: Large-scale multi-robot learning. arXiv, 2019.

[83] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot learning in homes: Improving

generalization and reducing dataset bias. In NeurIPS, 2018.

[84] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. D. Reid, S. Gould, and

A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation

instructions in real environments. In CVPR, 2017.

[85] H. Team. Habitat CVPR challenge, 2019. URL https://aihabitat.org/challenge/

2019/.

[86] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. Tchapmi, A. Toshev, R. Martín-Martín, and

S. Savarese. Interactive gibson benchmark: A benchmark for interactive navigation in cluttered

environments. IEEE Robotics and Automation Letters, 2020.

[87] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and

K. Grauman. Soundspaces: Audio-visual navigation in 3d environments. In ECCV, 2020.

[88] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi, and

R. Mottaghi. Manipulathor: A framework for visual object manipulation. In CVPR, 2021.

[89] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A

benchmark and evaluation for multi-task and meta reinforcement learning. In CoRL, 2019.

[90] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &

learning environment. IEEE Robotics and Automation Letters, 2020.

[91] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-across-room: Multilingual

vision-and-language navigation with dense spatiotemporal grounding. In EMNLP, 2020.

[92] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S. Gella, R. Pi-

ramithu, G. Tur, and D. Hakkani-Tur. TEACh: Task-driven embodied agents that chat. In

AAAI, 2022.

[93] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme. Dialfred: Dialogue-enabled

agents for embodied instruction following. IEEE Robotics and Automation Letters, 2022.

[94] A. Szot, K. Yadav, A. Clegg, V.-P. Berges, A. Gokaslan, A. Chang, M. Savva, Z. Kira, and

D. Batra. Habitat rearrangement challenge. https://aihabitat.org/challenge/2022_

rearrange, 2022.

[95] C. M. Kim, M. Danielczuk, I. Huang, and K. Goldberg. Simulation of parallel-jaw grasping

using incremental potential contact models. In ICRA, 2022.

[96] D. Hall, B. Talbot, and N. Sünderhauf. The robotic vision challenges. https://

nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022, 2022.

14

https://aihabitat.org/challenge/2019/
https://aihabitat.org/challenge/2019/
https://aihabitat.org/challenge/2022_rearrange
https://aihabitat.org/challenge/2022_rearrange
https://nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022
https://nikosuenderhauf.github.io/roboticvisionchallenges/cvpr2022

[97] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object

manipulation. In ICCV, 2019.

[98] C. Paxton, C. Xie, T. Hermans, and D. Fox. Predicting stable configurations for semantic

placement of novel objects. In CoRL, 2022.

[99] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible and scalable slam system

with full 3d motion estimation. In Proc. IEEE International Symposium on Safety, Security

and Rescue Robotics (SSRR). IEEE, November 2011.

[100] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path

planning. In ICRA, 2000.

[101] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation using

goal-oriented semantic exploration. In NeurIPS, 2020.

[102] B. Yamauchi. A frontier-based approach for autonomous exploration. In IEEE International

Symposium on Computational Intelligence in Robotics and Automation, 1997.

[103] J. A. Sethian. Fast marching methods. SIAM review, 1999.

[104] D. S. Chaplot, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore using active

neural mapping. ICLR, 2020.

[105] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al. Ros:

an open-source robot operating system. In ICRA Workshop on Open Source Software, 2009.

15

Appendix

Table of Contents

A Extended Related Work 16

B Metrics 17

B.1 Simulation Success Metrics . 17

B.2 Real World Success Metrics . 18

C Simulation Details 18

C.1 Object Categories Appearing in the Scene Dataset 18

C.2 Episode Generation Details . 19

C.3 Improved scene visuals . 21

C.4 Action Space Implementation . 21

D HomeRobot Implementation Details 22

D.1 Pose Information . 23

D.2 Low-Level Control for Navigation . 23

D.3 Heuristic Grasping Policy . 23

D.4 Heuristic Placement Policy . 24

D.5 Navigation Planning . 25

D.6 Navigation Limitations . 26

E Reinforcement Learning Baseline 27

E.1 Action Space . 27

E.2 Observation Space . 27

E.3 Training Setup . 27

F Additional Analysis 29

F.1 Number of steps taken in each stage by different baselines 30

F.2 Performance on Seen vs. Unseen Object Categories 31

G Hardware Setup 31

G.1 Hardware Choice . 31

G.2 Robot Setup . 32

G.3 Visualizing The Robot . 34

G.4 Using The Stretch: Navigation vs. Position Mode 35

A Extended Related Work

It is difficult to do justice to the rich embodied AI, natural language, computer vision, machine

learning, and robotics communities that have addressed aspects of the work presented here. The

following extends some of the discussion from the main manuscript about important advances that

the community has made.

Benchmarks have helped the community focus their efforts and fairly compare system performance.

For example, the YCB objects [49] allowed for direct comparison of results across manipulators and

models. While benchmarks and leaderboards are comparatively rare in robotics [48, 54, 32, 52, 63,

3, 38], they have been hugely influential in machine learning (e.g. ImageNet [68], GLUE [69], and

various language benchmarks [70±73], COCO [74], and SQuAD [75]). In robotics, competitions

16

such as RoboCup@Home [3], the Amazon Picking Challenge [38], and the NIST task board [54] are

prevalent and influential as an alternative, but generally systems aren’t reproducible across teams.

Datasets. In addition to the environments referenced in Table 1, offline datasets including robot

interactions with scenes have been used widely to train models. These datasets are typically obtained

using robots alone (e.g., [76, 77]), by teleoperation (e.g., [78, 79]) or human-robot demonstration

(e.g., [80]). Previous work such as [81] aim to collect large-scale datasets while works such as [82]

consider scaling across multiple embodiments. [83] take a step further by collecting robot data

in unstructured environments. Unlike these works, we do not limit our users to a specific dataset.

Instead, we provide a simulator with various scenes that can generate large-scale consistent data for

training. Also, note that we test the models in unseen environments, while most of the mentioned

works use the same environment for training and testing.

Simulation benchmarks. The embodied AI community has provided various benchmarks in

simulation platforms for tasks such as navigation [1, 84±87], object manipulation [88, 34, 89, 90],

instruction following [6, 91±93], room rearrangement [27, 94], grasping [95] and SLAM [96].

While these benchmarks ensure reproducibility and fair comparison of different methods, there is

always a gap between simulation and reality since it is infeasible to model all details of the real

world in simulation. Our benchmark, in contrast, enables fair comparison of different methods and

reproducibility of the results in the real world. Additionally, previous benchmarks often operate in a

simplified discrete action space [20, 6], even forcing that structure on the real world [2].

Robotics benchmarking. Robotics benchmarks must contend with the diversity of hardware,

morphology, and resources across labs. One solution is simulation [90, 57, 34, 20, 21, 86, 89, 6],

which can provide reproducible and fair evaluations. However, the sim-to-real gap means simulation

results may not be indicative of progress in the real world [2]. Another proposed solution is robotic

competitions such as RoboCup@Home [3], the Amazon Picking Challenge [38], and the NIST task

board [54]. However, participants typically use their own hardware, making it difficult to conduct fair

comparisons of the different underlying methods, and means results are not transferable to different

labs or settings. This is also a large barrier to entry to these competitions.

B Metrics

We informally defined our scoring metrics in Sec. 3. Here, we provide formal definitions of our

partial success metrics.

B.1 Simulation Success Metrics

Success in simulation is defined per stage as:

• FindObj: Successful if the agent reaches within 0.1m of a viewpoint of the target object on

start_receptacle, and at least 0.1% of the pixels in its camera frame belong to an object

instance.

• Pick: Successful if FindObj succeeded, the agent enables the gripper at an instant where an

object instance is visible and its end-effector reaches within 0.8m of a target object. We magically

snap the object to the agent’s gripper in simulation.

• FindRec: Successful if Pick succeeded, and the agent reaches within 0.1m of a viewpoint of a

goal_receptacle, and at least 0.1% of the pixels in its camera frame belong to the object containing

a valid receptacle.

• Place: Successful if FindRec succeeded, the agent releases the object and subsequently the

object stays in contact with the goal_receptacle with linear and angular velocities below a

threshold of 5e−3 m/s and 5e−2 rad/s respectively for 50 contiguous steps. Further, the agent should

not collide with the scene while attempting to place the object.

An episode is considered to have succeeded if it succeeds in all 4 stages within 1250 steps.

17

10
1

10
2

cu
sh

ion

bo
x

pic
tur

e f
ram

e

cu
p
bo

ok
bo

wl
clo

ck
sh

oe
gla

ss

bo
ttle

pa
n
tra

y
stu

ffe
d t

oy

so
ap

 di
sp

en
se

r

tom
ato

po
tat

o
lap

top
eg

g
bre

ad
ap

ple

sta
tue

du
mbb

ell

ca
nd

le

mult
ipo

rt h
ub

ca
ss

ero
le

toy
 an

im
al

jug ac
tio

n f
igu

re

tea
po

t

ha
nd

 to
wel

toy
 ve

hic
le

sp
ray

 bo
ttle

pla
nt

co
nta

ine
r

kn
ife
ce

llp
ho

ne

tap
e
sp

ice
mill

ten
nis

 ra
cq

ue
t

ke
ttle
ele

ctr
ic

ke
ttle

pe
n
lap

top
 st

an
d

ga
ming

 co
ns

ole

cre
dit

 ca
rd

bo
ard

 ga
me

ba
se

ba
llb

at

Seen Categories

Seen Category
Seen Intances
Unseen Intances

Single seen instance categories:
watch, toy swing, toy pineapple,
toy food, toy fire truck, toy cactus,
sushi mat, stuffed toy, spoon, spec-
tacles, spatula, soap dish, screw-
driver, scissors, ramekin, pitcher,
mouse pad, monitor stand, milk
frother cup, lunch box, laptop
cover, lamp, ladle, keychain, hat,
handbag, hammer, fork, folder,
file sorter, carrying case, candy
bar, candle holder, cake pan, c-
clamp, butter dish, bundt pan, bath
towel, basketball

10
1

10
2

va
se

pla
te

po
t

let
tuc

e

toi
let

ry

pla
nt

sa
uc

er

clo
th

sa
lt a

nd
 pe

pp
er

sh
ak

er

pe
nc

il c
as

e

ha
rd

dri
ve

ne
wsp

ap
er

ca
nis

ter

plu
ng

er

an
dro

id
fig

ure

rem
ote

ca
n

ba
sk

et

wine
 bo

ttle

toy
 ra

ttle

toy
 ai

rpl
an

e

sp
on

ge

ph
on

e s
tan

d

jar

Unseen Categories

Single instance categories: wa-
tering can, video game cartridge,
utensil holder cup, toy table, toy
sofa, toy sink, toy refrigerator, toy
lamp, toy fruits, toy construction
set, toy bee, tissue box, squeezer,
soap, helmet, electronic cable,
doll, dish, can opener, battery
charger, backpack

Figure 6: Number of objects across different splits, for both seen categories and unseen categories.
We divide objects between categories which appear in training data ± seen categories ± and those that
do not ± unseen categories. The goal of Open-Vocabulary Mobile Manipulation is to be able to find
and manipulate objects specified by language.

B.2 Real World Success Metrics

Success in real world is defined per stage as:

• FindObj: Successful if the agent reaches within 1m of the target object on start_receptacle

and the object is visible in the RGB image from the camera.

• Pick: Successful if FindObj succeeded and the agent successfully picks up the object from the

start_receptacle.

• FindRec: Successful if Pick succeeded, and the agent reaches within 1m of a goal_receptacle,

and the goal_receptacle is visible in the RGB image from the camera.

• Place: Successful if FindRec succeeded and the agent places object on a goal_receptacle

and the object settles down on the goal_receptacle stably.

Given that the scene we use in the real world is much smaller than the apartments in simulation,

we allow the agent to act in the environment for 300 timesteps. The episode is considered to have

succeeded if it succeeds in all 4 stages.

C Simulation Details

C.1 Object Categories Appearing in the Scene Dataset

action_figure, android_figure, apple, backpack, baseballbat, basket, basketball,

bath_towel, battery_charger, board_game, book, bottle, bowl, box, bread, bundt_pan,

butter_dish, c-clamp, cake_pan, can, can_opener, candle, candle_holder, candy_bar,

canister, carrying_case, casserole, cellphone, clock, cloth, credit_card, cup,

cushion, dish, doll, dumbbell, egg, electric_kettle, electronic_cable, file_sorter,

folder, fork, gaming_console, glass, hammer, hand_towel, handbag, hard_drive, hat,

helmet, jar, jug, kettle, keychain, knife, ladle, lamp, laptop, laptop_cover,

18

cushion

cup

pan

vase

plate

plant saucer

Figure 7: Example objects in our object dataset across 6 categories. The cushion, cup, and pan
categories are in the train split, and the vase, plate, and plant saucer are in the validation and test sets.

laptop_stand, lettuce, lunch_box, milk_frother_cup, monitor_stand, mouse_pad,

multiport_hub, newspaper, pan, pen, pencil_case, phone_stand, picture_frame,

pitcher, plant_container, plant_saucer, plate, plunger, pot, potato, ramekin,

remote, salt_and_pepper_shaker, scissors, screwdriver, shoe, soap, soap_dish,

soap_dispenser, spatula, spectacles, spicemill, sponge, spoon, spray_bottle,

squeezer, statue, stuffed_toy, sushi_mat, tape, teapot, tennis_racquet,

tissue_box, toiletry, tomato, toy_airplane, toy_animal, toy_bee, toy_cactus,

toy_construction_set, toy_fire_truck, toy_food, toy_fruits, toy_lamp, toy_pineapple,

toy_rattle, toy_refrigerator, toy_sink, toy_sofa, toy_swing, toy_table, toy_vehicle,

tray, utensil_holder_cup, vase, video_game_cartridge, watch, watering_can,

wine_bottle

In Fig. 7 we show some of the examples of a selection of these categories from the training and

validation/test splits.

C.2 Episode Generation Details

When generating episodes, we find the largest indoor navigable area in each scene, and then filter

the list of all receptacles from this scene that are too small for object placement. Fig. 8 shows the

navigable islands in several of our scenes (top row), and corresponding top-down views of each scene

in the bottom row. We then sample objects according to the current split (train, validation, or test).

We run physics to ensure that objects are placed in stable locations. Then we select objects randomly

from the appropriate set, as determined by the current split.

Finally, we generate a set of candidate viewpoints, shown in Fig. 9, which represent navigable

locations to which the robot can move for each receptacle. These are used for training specific skills,

such as navigation to receptacles. Each viewpoint corresponds to a particular start_receptacle

or goal_receptacle, and represents a nearby location where the robot can see the receptacle and is

within 1.5 meters. Fig. 10 gives examples of where these viewpoints are created.

19

Figure 8: Visualization of the navigable geometry (top row) and top-down views of example scenes
from the Habitat Synthetic Scenes Dataset (HSSD) [19]. We use the computed navigable area to
efficiently generate a large number of episodes for the Open-Vocabulary Mobile Manipulation task.
Object placement positions are sampled to be near navigable areas of the map, atop one of a large
variety of different receptacles, such that the robot can reach them.

Figure 9: First-person view from different precomputed viewpoints in our episode dataset. These
viewpoints are used as goals for training navigation skills, and are used in the initialization of the
placement and gaze/grasping skills as well. The purple mesh indicates receptacle surface.

Navmesh: We precompute a navigable scene geometry as done in [20] for faster collision checks of

the agent with the scene. The ªmeshº comprising this navigable geometry is referred to as a navmesh.

Number of objects: This is dynamically set per scene to 1.5-2× the total available receptacle area in

m2. For example, if the total receptacle surface area for a scene is 10m2, then 15-20 objects will be

placed. The exact number of objects will be randomly selected per episode to be in this range.

The full set of included receptables in simulation is: bathtub, bed, bench, cabinet, chair,

chest_of_drawers, couch, counter, filing_cabinet, hamper, serving cart,

shelves, shoe_rack, sink, stand, stool, table, toilet, trunk, wardrobe, &

washer_dryer.

20

Figure 10: Viewpoints created for an object during episode generation. The gray area is the navigable
region of the scene. The big red dot and the black box are the object’s center and bounding box
respectively. The surrounding dots are viewpoint candidates: red dots were rejected because they
weren’t navigable, and blue dots were rejected because they were too far from the object. The green
dots are the final set of viewpoints.

C.3 Improved scene visuals

We rewrote and expanded the existing Physically-Based Rendering shader (PBR) and added Horizon-

based Ambient Occlusion (HBAO) to the Habitat renderer, which led to notable improvements in

viewing quality which were necessary for using the HSSD [19] dataset.

• Rewrote PBR and Image Based Lighting (IBL) base calculations.

• Added multi-layer material support covering KHR_materials_clearcoat,

KHR_materials_specular, KHR_materials_ior, and KHR_materials_anisotropy

for both direct and indirect (IBL) lighting.

• Added tangent frame synthesis if precomputed tangents are not provided.

• Added HDR Environment map support for IBL.

We present comparisons between default Habitat visuals and improved renderings in Figure 11.

We also benchmark the ObjectNav training speeds of a DDPPO-based RL agent with and without the

improved rendering and present the results in 12. We see that the improvement in scene lighting and

rendering comes at the cost of only a 3% dip in training FPS (decreasing from around 340 to around

330).

C.4 Action Space Implementation

We look at two different choices of action space for our navigation agents, either making discrete or

continuous predictions about where to move next. Our expectation from prior work might be that the

discrete action space would be notably easier for agents to work with.

Discrete. Previous benchmarks often operate in a fully discrete action space [20, 6], even in the real

world [2]. We implement a set of discrete actions, with fixed in-place rotation left and right, and

translation of steps 0.25m forward.

Continuous. Our continuous action space is implemented as a teleporting agent, where the robot

needs to move around by predicting a local waypoint. Our robot’s low level controllers are expected

to be able to get the robot to this location, in lieu of simulating full physics for the agent.

21

Figure 11: Here we present the improvements in scene visuals with Horizon-based Ambient
Occlusion (HBAO) and expanded Physics-based Rendering (PBR) material support added to the
Habitat renderer. The top row shows images from the default renderer whereas the bottom row shows
the improved renderings.

Figure 12: Minor drop in FPS with improved scene rendering: Here, we benchmark the training
speeds (through FPS numbers) of two ObjectNav training runs with and without the HBAO and
PBR-based improved scene visuals. We observe that the improved rendering leads to a very small
drop in FPS from around 340 to 330 (3 % drop).

In simulation, this is implemented as a check against the navmesh - we use the navmesh to determine

if the robot will go into collision with any objects if moved towards the new location, and move it to

the closest valid location instead.

D HomeRobot Implementation Details

Here, we describe more specifics for how we implemented the heuristic policies provided as a baseline

to accelerate home assistant robot research.

Although there exists a considerable body of prior research looking at learning specific grasping [97,

65, 66, 64] or placement [98, 17] skills, we found that it was easiest to implement heuristic policies

with low CPU/GPU requirements and high interpretability. Other recent works have similarly used

heuristic grasping and placement policies to great affect (e.g. TidyBot [62]).

There are three different repositories within the open-source HomeRobot library:

22

• home_robot: Shared components such as Environment interfaces, controllers, detection

and segmentation modules.

• home_robot_sim: Simulation stack with Environments based on Habitat.

• home_robot_hw: Hardware stack with server processes that runs on the robot, client API

that runs on the GPU workstation, and Environments built using the client API.

Most policies are implemented in the core home_robot library. Within HomeRobot, we also divide

functionality between Agents and Environments, similar to how many reinforcement learning

benchmarks are set up [20].

• Agents contain all of the necessary code to execute policies. We implement agents which use

a mixture of heuristic policies and policies learned on our scene dataset via reinforcement

learning.

• Environments provide common logic; they provide Observations to the Agent, and a

function which allows them to apply their action to the (real or simulated) environment.

D.1 Pose Information

We get the global robot pose from Hector SLAM [99] on the Hello Robot Stretch [22], which is used

when creating 2d semantic maps for our model-based navigation policies.

D.2 Low-Level Control for Navigation

The Hello Stretch software provides a native interface for controlling the linear and angular velocities

of the differential-drive robot base. While we do expose an interface for users to control these

velocities directly, it is desireable to have desired short-term goals as a more intuitive action space for

policies, and to make them update-able at any instant to allow for replanning.

Thus, we implemented a velocity controller that produces continuous velocity commands that moves

the robot to an input goal pose. The controller operates in a heuristic manner: by rotating the

robot so that it faces the goal position at all times while moving towards the goal position, and then

rotating to reach the goal orientation once goal position is reached. The velocities to induce these

motions are inferred with a trapezoidal velocity profile and some conditional checks to prevent it

from overshooting the goal.

Limitations The Fast Marching Method-based motion planning from prior work [2] that we

describe in Sec. D.2. It assumes the agent is a cylinder, and therefore is much more limited in where

it can navigate than, e.g., a sampling based motion planner like RRT-connect [100] which can take

orientation into account. In addition, our semantic mapping requires a list of classes for use with

DETIC [26]; instead, it would be good to use a fully open-vocabulary scene representation like

CLIP-Fields [11], ConceptFusion [15], or USA-Net [12], which would also improve our motion

planning significantly.

D.3 Heuristic Grasping Policy

Numerous powerful grasp generation models have been proposed in the literature, such as GraspNet-

1Billion [66], 6-DOF GraspNet [65], and Contact-GraspNet [64]. However, for transparency, repro-

ducibility, and ease of installation, we implement a simple, heuristic grasping policy, which assumes

a parallel gripper performing top-down grasps. Heuristic grasp policies appear throughout robotics

research (e.g. in TidyBot [62]). In our case, the heuristic policy voxelizes the point cloud, and chooses

areas at the top of the object where points exist, surrounded by free space, in order to grasp. Fig. 13

shows the simple grasp policy in action and additional details are presented in Sec. D.3. This policy

works well on a wide variety of objects, and we saw comparable performance to the state-of-the-art

open-source grasping models we tested [64, 66].

23

Figure 13: Grasping tests in various lab environments. To provide a strong baseline, we tuned the
grasp policy to be highly reliable given the Stretch’s viewpoint, on a variety of objects.

The intuition is to identify areas where the gripper fingers can descend unobstructed into two sides of

a physical part of the object, which we do through a simple voxelization scheme. We take the top

10% of points in an object, voxelize at a fixed resolution of 0.5cm, and choose grasps with free voxels

(where fingers can go) on either side of occupied voxels. In practice, this achieved a high success

rates on a variety of real objects.

The procedure is as follows:

1. Given a target object point cloud, convert the point cloud into voxels of size 0.5 cm.

2. Select top 10% occupied voxels with the highest Z coordinates.

3. Project the selected voxels into a 2-D grid.

4. Consider grasps centered around each occupied voxel, and identify three regions: two where

the gripper fingers will be and one representing the space between the fingers.

5. Score each grasp based on 1) how occupied the region between the fingers is, and 2) how

empty the two surrounding regions are.

6. Perform smoothing on the grasp scores to reject outliers (done by multiplying scores with

adjacent scores).

7. Output grasps with final scores above some threshold.

We compared this policy to other methods like ContactGraspnet [64], 6-DoF Graspnet [65, 97], and

Graspnet 1-Billion [66]. We saw more intermittent failures due to sensor noise using these pretrained

methods, even after adapting the grasp offsets to fit to the Hello Robot Stretch’s gripper geometry. In

the end, we leave training better grasp policies to future work.

D.4 Heuristic Placement Policy

As with grasping, a number of works on stable placement of objects have been proposed in the

literature [98, 17]. To provide a reasonable baseline, we implement a heuristic placement strategy that

assumes that the end-receptacle is at least barely visible when it takes over; projects the segmentation

mask onto the point cloud and chooses a voxel on the top of the object. Fig. 14 shows an example of

the place policy being executed in the real world.

Specifically, our heuristic policy is implemented as such:

1. Detect the end-receptacle in egocentric RGB observations (using DETIC [26]), project

predicted image segment to a 3D point cloud using depth, and transform point cloud to robot

base coordinates using camera height and tilt.

24

Figure 14: An example of the robot navigating to a goal_receptacle (sofa) and using the heuristic
place policy to put down the object (stuffed animal). Heuristic policies provide an interpretable and
easily extended baseline.

2. Estimate placement point: Randomly sample 50 points on the point cloud and choose one

that is at the center of the biggest (point cloud) slab for placing objects. This is done by

scoring each point based on the number of surrounding points in the X/Y plane (Z is up)

within a 3 cm height threshold.

3. Rotate robot for it to be facing the placement point, then move robot forward if it is more

than 38.5 cm away (length of retracted arm + approximate length of the Stretch gripper).

4. Re-estimate placement point from this new robot position.

5. Accordingly, set arm’s extension and lift values to have the gripper be a few cm above

placement position. Then, release the object to land on the receptacle.

D.5 Navigation Planning

Our heuristic baseline extends prior work [2], which was shown to work in a wide range of human

environments. We tune it for navigating close to other objects and extended it to work in our

continuous action space ± challenging navigation aspects not present in the original paper. The

baseline has three components:

Semantic Mapping Module. The semantic map stores relevant objects, explored regions, and

obstacles. To construct the map, we predict semantic categories and segmentation masks of objects

from first-person observations. We use Detic [26] for object detection and instance segmentation and

backproject first-person semantic segmentation into a point cloud using the perceived depth, bin it

into a 3D semantic voxel map, and finally sum over the height to compute a 2D semantic map.

We keep track of objects detected, obstacles, and explored areas in an explicit metric map of the

environment from [101]. Concretely, it is a binary K x M x M matrix where M x M is the map

size and K is the number of map channels. Each cell of this spatial map corresponds to 25 cm2 (5 cm

x 5 cm) in the physical world. Map channels K = C + 4 where C is the number of semantic object

categories, and the remaining 4 channels represent the obstacles, the explored area, and the agent’s

current and past locations. An entry in the map is one if the cell contains an object of a particular

semantic category, an obstacle, or is explored, and zero otherwise. The map is initialized with all

zeros at the beginning of an episode and the agent starts at the center of the map facing east.

Frontier Exploration Policy. We explore the environment with a heuristic frontier-based exploration

policy [102]. This heuristic selects as the goal the point closest to the robot in geodesic distance

within the boundary between the explored and unexplored region of the map.

Navigation Planner. Given a long-term goal output by the frontier exploration policy, we use the

Fast Marching Method [103] as in [101] to plan a path and the first low-level action along this path

deterministically. Although the semantic exploration policy acts at a coarse time scale, the planner

acts at a fine time scale: every step we update the map and replan the path to the long-term goal. The

25

Figure 15: Real-world examples (also see Fig 2). Our system is able to find held-out objects in an
unseen environment and navigate to receptacles in order to place them, all with no information about
the world at all, other than the relevant classes. However, we see this performance is highly dependent
on perception performance for now; many real-world examples also fail due to near-miss collisions.

robot attempts to plan to goals if they have been seen; if it cannot get within a certain distance of the

goal objects, then it will instead plan to a point on the frontier.

Navigating to objects on start_receptacle. Since small objects (e.g. action_figure, apple)

can be hard to locate from a distance, we leverage the typically larger start_receptacle goals for

finding objects. We make the following changes to the original planning policy [104]:

1. If object and start_receptacle co-occur in at least one cell of the semantic map, plan to

reach the object

2. If the object is not found but start_receptacle appears in the semantic map after exclud-

ing the regions within 1m of the agent’s past locations, plan to reach the start_receptacle

3. Otherwise, plan to reach the closest frontier

In step 2, we exclude the regions that the agent has been close to, to prevent it from re-visiting already

visited instances of start_receptacle.

D.6 Navigation Limitations

We implemented a navigation system that was previously used in extensive real-world experiments [2],

but needed to tune it extensively for it to get close enough to objects to grasp and manipulate them.

The original version by Gervet et al. [2] was focused on finding very large objects from a limited

set of only six classes. Ours supports many more, but as a result, tuning it to both be able to grasp

objects and avoid collisions in all cases is difficult.

This is partly because the planner is a discrete planner based on the Fast Marching Method [103],

which cannot take orientation into account and relies on a 5cm discretization of the world. ampling-

based motion planners like RRT-Connect [100], or like that used in the Task and Motion Planning

literature [67, 8], may offer better solutions. Alternately, we could explore optimization-based

planners specifically designed for open-vocabulary navigation planning, as has recently been pro-

posed [12].

Our navigation policy relies on accurate pose information from Hector SLAM [99], and unfortunately

does not handle dynamic obstacles. It also models the robot’s location as a cylinder; the Stretch’s

26

center of rotation is slightly offset from the center of this cylinder, which is not currently accounted

for. Again, sampling-based planners might be better here.

E Reinforcement Learning Baseline

We train four different RL policies: FindObject, FindReceptacle, GazeAtObject, and

PlaceObject.

E.1 Action Space

E.1.1 Navigation Skills

FindObject and FindReceptacle are, collectively, navigation skills. For these two skills, we use

the discrete action space, as mentioned in Sec. C.4. In our experiments, we found the discrete action

space was better at exploration and easier to train.

E.1.2 Manipulation Skills

For our manipulation skills, we using a continuous action space to give the skills fine grained control.

In the real world, low-level controllers have limits on the distance the robot can move in any particular

step. Thus, in simulation, we limit our base action space by only allowing forward motions between

10-25 cm, or turning by 5-30 degrees in a single step. The head tilt, pan and gripper’s yaw, roll and

pitch can be changed by at most 0.02-0.1 radians in a single step. The arm’s extension and lift can be

changed by at most 2-10cm in a single step. We learn by teleporting the base and arm to the target

locations.

E.2 Observation Space

Policies have access to depth from the robot head camera, and semantic segmentation, as well as the

robot’s pose relative to the starting pose (from SLAM in the real world), camera pose, and the robot’s

joint states, including the gripper. RGB image is available to the agent but not used during training.

E.3 Training Setup

All skills are trained using a slack reward of -0.005 per step, incentivizing completion of task using

minimum number of steps. For faster training, we learn our policies using images with a reduced

resolution of 160x120 (compared to Stretch’s original resolution of 640x480).

E.3.1 Navigation Skills

We train FindObject and FindReceptacle policies for the agent to reach a candidate object or

a candidate target receptacle respectively. The training procedure is the same for both skills. We

pass in the CLIP [14] embedding corresponding with the goal object, as well as segmentation masks

corresponding with the detected target objects. The agent is spawned arbitrarily, but at least 3 meters

from the target, and must move until within 0.1 meters of a goal ªviewpoint,º where the object is

visible.

Input observations: Robot head camera depth, ground-truth semantic segmentation for all receptacle

categories (receptacle segmentation), robot’s pose relative to the starting pose, joint sensor giving

states of camera and arm joints. We implement object-level dropout for the semantic segmentation

mask, where each object has a probability of 0.5 of being left out of the mask. In addition, the input

observation space includes the following:

• Goal specification: For FindObject, we pass in the CLIP embedding of the target object

and the start receptacle category. For FindReceptacle, we pass in the goal receptacle

category.

27

• Goal segmentation images: During training, the simulator provides ground truth goal

object segmentation; on the real robot, these are predicted by DETIC [26]. For FindObject,

we pass in two channels: one showing all instances of candidate objects, one showing all

instances of candidate start receptacles. For FindReceptacle, we pass a single channel

showing all instances of candidate goal receptacles. We implement a similar object-level

dropout procedure here as we did for the receptacle segmentation.

Initial state: The agent is spawned at least 3m away from candidate object or receptacle. It starts in

ªnavigation mode,º with the robot’s head facing forward.

Actions: The policy predicts translation and rotation waypoints, as well as a discrete stop action.

Success condition: The agent should call the discrete stop action when it reaches within 0.5m of a

goal view point. The agent should be facing the target: the angle between agent’s heading direction

and the ray from robot to center of the closest candidate object should be no more than 15 degrees.

Reward: Assume at time step t, the geodesic distance to the closest goal is given by d(t), the

angle between agent’s heading direction and the ray from agent to closest goal is given by θ(t), and

did_collide(t) indicates if the action the agent took at time t− 1 resulted in a collision at time t. The

training reward is given by:

RFindX(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ Dclose][θ(t− 1)− θ(t)] + γ1[did_collide(t)]

with α = 1, β = 1, γ = 0.3 and Dclose = 3.

E.3.2 GazeAtObject

The GazeAtObject skill starts near the object, and provides some final refinement steps until the

agent is close enough to call a grasp action, i.e. it is in arm’s length of the object and the object is

centered and visible. The agent needs to move closer to the object and then adjust its head tilt until

the candidate object is close and centered. It makes predictions to move and rotate the head, as well

as to center the object and make sure it’s within arm’s length, so that the discrete grasping policy can

execute.

The GazeAtObject skill is supposed to start off from locations and help reach a location within

arm’s length of a candidate object. This is trained by first initialising the agents close to candidate

start receptacles. The agent is then tasked to reach close to the agent and adjust its head tilt such that

the candidate object is close and centered in the agent’s camera view. We next provide details on the

training setup.

Input observations: Ground truth semantic segmentation of candidates objects, head depth sensor,

joint sensor giving all head and arm joint states, sensor indicating if the agent is holding any object,

clip embedding for the target object name.

Initial state: The robot again starts in ªnavigation mode,º with its arm retracted, with the gripper

facing downwards, and with the head/camera facing the base, base at an angle of 5 degrees of the

center object and on one of the ªviewpointº locations pre-computed during episode generation. The

object will therefore be assumed to be visible.

Actions: This policy predicts base translation and rotation waypoints, camera tilt, as well as a discrete

ªgraspº action.

Success condition: The center pixel on the camera should correspond to a valid candidate object and

the agent’s base should be within 0.8m from the object.

Reward: We train the gaze-policy mainly with a dense reward based on distance to goal. Specifically,

assuming the distance of the end-effector to the closest candidate goal at time t is d(t) (in metres),

the agent receives a reward proportional to d(t − 1) − d(t). Further, when the agent reaches with

0.8m, we provide an additional reward for incentivizing the agent to look towards the object.

28

Nav. Manip. Perception FindObj Gaze FindRec Place Total

Heuristic Heuristic Ground Truth 485.3 - 95.9 8.5 574.1
Heuristic RL Ground Truth 483.5 7.7 101.9 67.2 611.6
RL Heuristic Ground Truth 313.4 - 136.9 7.7 437.6
RL RL Ground Truth 327.6 9.1 130.0 47.8 433.6
Heuristic Heuristic DETIC [26] 405.9 - 48.9 6.8 459.0
Heuristic RL DETIC [26] 412.8 44.7 47.5 242.2 584.2
RL Heuristic DETIC [26] 504.3 - 128.4 7.3 586.2
RL RL DETIC [26] 496.3 45.9 139.0 156.4 583.3

Table 5: The number of steps that the agent takes performing each of the skills for different baselines.
Note that here we only consider the cases where the skill terminates. The last column gives the total
number of steps the agent takes on average for executing the four skills.

Let θ(t) denote the angle (in radians) between the ray from agent’s camera to the object and camera’s

normal. Then the reward is given as:

RGaze(t) = α[d(t− 1)− d(t)] + β1[d(t) ≤ γ]cos(θ(t))

with α = 2, β = 1 and γ = 0.8 in our case.

The agent receives an additional positive reward of 2 once the episode succeeds and receives a

negative reward of −0.5 for centering its camera towards a wrong object.

E.3.3 PlaceObject

Finally, the robot must move its arm in order to place the object on a free spot in the world. In this

case, it starts at a viewpoint near a goal_receptacle. It must move up to the object and open its

gripper in order to place the object on this surface.

Input observations: Ground truth segmentation of goal receptacles, head depth sensor, joint sensor,

sensor indicating if the agent is holding any object, CLIP [14] embedding for the name of object

being held.

Initial configuration: Arm retracted, with gripper down and holding onto an object, head facing the

base. The agent is spawned on a viewpoint with its base facing the object with an error of at most 15

degrees.

Actions: Base translation and rotation waypoints, all arm joints (arm extension, arm lift, gripper yaw,

pitch and roll), a manipulation mode action that can be invoked only once in an episode to turn the

agent’s head towards the arm and rotate the base left by 90 degrees. The agent is not allowed to move

its base while in manipulation mode.

Success condition: The episode succeeds if the agent releases the object and the object stays on the

receptacle for 50 timesteps.

Reward: The agent receives a positive sparse reward of 5 when it releases the object and the object

comes in contact with a target receptacle. Additionaly, we provide a positive reward of 1 for each

step the object stays in contact with the target receptacle. It receives a negative reward of −1 if the

agent releases the object but the object does not come in contact with the receptacle.

F Additional Analysis

Here, we provide some additional analysis of the different skills we trained to complete the Open-

Vocabulary Mobile Manipulation task.

29

 Pick a box from a stand and place it on a chair.

Episode start Find object Find receptacle Place object

 Pick a multiport hub from a stool and place it on a table.

 Pick a toy from a table and place it on a stool.

Figure 16: We show multiple executions of the Open-Vocabulary Mobile Manipulation task in a
variety of simulated environments.

Nav. Manip. Perception FindObj Gaze Pick FindRec Place Place terminates

Heuristic Heuristic Ground Truth 100.0 - 55.2 55.2 48.9 48.8
Heuristic RL Ground Truth 100.0 54.7 53.7 53.7 46.7 36.3
RL Heuristic Ground Truth 100.0 - 80.6 80.6 71.2 71.1
RL RL Ground Truth 100.0 79.5 68.1 68.1 60.2 48.2
Heuristic Heuristic DETIC [26] 100.0 - 31.8 31.8 27.8 27.8
Heuristic RL DETIC [26] 100.0 32.3 17.6 17.6 15.5 4.3
RL Heuristic DETIC [26] 100.0 - 50.2 50.2 37.3 37.2
RL RL DETIC [26] 100.0 50.1 24.8 24.8 19.8 8.5

Table 6: We report the percentage of times each skill gets invoked for each of the different baselines.
The last column gives the percentage of times the agent finishes executing all skills.

F.1 Number of steps taken in each stage by different baselines

Table 5 shows the number of steps taken by each skill in our baseline. With DETIC perception, we

observed that the RL skills explored less efficiently than our simple heuristic-based planner; this

translates to far fewer steps taken in successful episodes, although because RL exploration essentially

ªgives upº if an object isn’t nearby, it can take lots of steps in many situations. In the real world, we

saw similar behavior - sometimes, the RL policies would not explore enough to be able to find a goal

at all.

Next, we observe that the Gaze and Place policies, which were trained with ground truth perception,

take significantly longer to terminate with DETIC perception.

30

FindObj Success. PickObj Success. FindRec Success Overall Success
Nav. Manip. Perception SC,UI UC,UI All SC,UI UC,UI Total SC,UI UC,UI All SC,UI UC,UI All

Heuristic Heuristic Ground Truth 47.9 42.3 46.2 40.3 38.0 39.5 18.2 19.7 18.6 6.3 4.9 5.9
Heuristic RL-PPO Ground Truth 47.9 45.3 47.2 42.0 41.0 41.7 26.5 28.6 27.1 10.7 11.9 11.0
RL-PPO Heuristic Ground Truth 54.6 56.1 55.1 42.5 40.7 41.9 25.9 27.2 26.4 4.9 5.9 5.2
RL-PPO RL-PPO Ground Truth 55.5 55.8 55.7 50.5 49.3 50.2 35.6 34.2 35.2 12.3 10.0 11.6
Heuristic Heuristic DETIC [26] 23.6 22.6 23.3 11.7 11.1 11.5 2.9 3.2 3.0 0.2 0.5 0.3
Heuristic RL-PPO DETIC [26] 25.5 22.9 24.8 10.0 8.4 9.5 5.4 4.3 5.0 0.2 0.3 0.2
RL-PPO Heuristic DETIC [26] 20.2 19.1 19.9 10.5 10.0 10.2 4.7 3.8 4.4 0.9 0.0 0.6
RL-PPO RL-PPO DETIC [26] 20.0 19.1 19.8 12.2 11.1 11.8 7.1 4.9 6.3 0.9 0.8 0.8

Table 7: Performance breakdown by seen and unseen categories, and compared to overall performance.
In our baselines, we relied heavily on a pretrained object detector for generalization, so we don’t see
a dramatic difference in performance between seen and unseen objects.

Finally, in Table 6, we look at the percentage of times the agent attempts each of the different skills.

We find that the RL trained FindObj skill terminates more often than the heuristic FindObj skill and

episodes terminate less frequently with DETIC perception when compared to GT perception.

F.2 Performance on Seen vs. Unseen Object Categories

Table 7 shows results broken down by seen vs. unseen instances, and seen vs. unseen categories.

Specifically we look at these two pools of objects from the validation set:

• SC,UI: Seen category, unseen instance. An object of a class that appeared in the training

data (e.g., ªcupº), but not a specific ªcupº that appeared in the training data.

• UC,UI: Unseen instance of an unseen category; an object of a type that did not appear in

the training data at all.

In general, because we are relying on DETIC and not training our own semantic perception for this

baseline, we do not see a large difference between the two categories of object.

F.2.1 Example DETIC [26] predictions

In Table 5, we observe that Gaze policy takes significantly longer time to terminate with DETIC [26]

perception. The gaze policy (see Fig. 17) tries to center the agent on the object of interest by allowing

the agent to move its base and camera tilt. For this, it relies on DETIC’s ability to detect novel objects.

Now, we visualize DETIC segmentations of agent’s egocentric observations by placing agent at the

points where the Gaze skill is expected to start: the object’s viewpoints. We observe that while

DETIC succeeds in a few cases, it fails at consistently detecting the objects in the egocentric frame.

G Hardware Setup

Here, we will discuss choices related to the real-world hardware setup in extra detail along with

information about the tools that we use for the visualization on the robot. This appendix contains

notes on how to set up the robotics stack in the real world, useful tools that we contribute, and some

best practices for development. Setting up mobile robots is hard, and one of the main goals of the

HomeRobot project is to make it both easy and somewhat affordable for researchers.

G.1 Hardware Choice

We describe some options for commercially-available robotics hardware in Tab. 8. While the Franka

Emika Panda is not a mobile robot, we include it here because it’s a very commmonly used platform

in both industrial research labs and at universities, making its price a fair comparison point for what

is reasonable.

31

Figure 17: RL Gaze skill in action: The agent is allowed to move its base and change its camera tilt
to get closer to objectand bring objectat the center of its camera frame

Human Commercially Manipulation Approximate
Name Mobile Sized Safe Available DOF Cost

Boston Dynamics Spot ✔ ✖ ✖ ✔ 7 $200,000
Franka Emika Panda ✖ ✖ ✓ ✔ 7 $30,000
Locobot ✔ ✖ ✔ ✖ 5 $5,000
Fetch ✔ ✔ ✓ ✖ 7 $100,000
Hello Robot Stretch ✔ ✔ ✔ ✔ 4 $19,000
Stretch with DexWrist ✔ ✔ ✔ ✔ 6 $25,000

Table 8: Notes on platform selection. We chose the Stretch with DexWrist as a good compromise
between manipulation, navigation, and cost, while being human-safe and approximately human-sized.

G.2 Robot Setup

One challenge with low-cost mobile robots is how we can run GPU- and compute-intensive models to

evaluate modern AI methods on them. The Stretch, like many similar robots, does not have onboard

GPU, and will always have more limited compute than is available on a similar workstation.

As described in Sec. 4, we address this with a simple network configuration shown in Fig. 19. There

are three components:

1. The desktop running code ± in our case, the eval_episode.py script from HomeRobot ±

which connects to a remote mobile manipulator.

2. The dedicated router ± an off-the-shelf consumer router, such as a Netgear Nighthawk

router. This should ideally be dedicated for your robot and desktop setup to ensure good

performance.

3. The mobile robot itself: a Stretch with DexWrist, as described above.

32

Figure 18: Visualization of groundtruth and DETIC [26] segmentation masks for agent’s egocentric
RGB observations. Note that we use a DETIC vocabulary consisting of the fixed list of receptacle
categories and target objectname. We observed that DETIC often fails to accurately detect all the
objects present in the given frame.

After the robot is configured, then you just need to run one script, a ROS launch file, as described in

the HomeRobot startup instructions, which can be done over SSH. Then, with a properly configured

robot and router, you can visualize information on the desktop side, showing the robot’s position,

map from SLAM, and cameras. On the robot side, the only necessary command is:

roslaunch home_robot_hw startup_stretch_hector_slam.launch

Checking network performance. We describe the visualization tools available briefly in the next

section, but to check that the setup is working properly, you can start rviz and wave your hand in

front of the robot ± you should see minimal latency when waving a hand in front of the camera.

Timing between the robot and the remote workstation. We use ROS [105] as our communications

layer, and to implement low-level control on the robot. This also provides network communication.

However, due to potential latency between the robot and desktop, we also need to make sure that

observations are up to date.

We set up the robot to block after executing most navigation motions, in order to make this process

simpler, until there is an up to date image observation from the robot side. This means that timing

between the robot and the workstation is extremely important: if we do not have up to date timing,

we might have SLAM poses and depth measurements that do not match, which will lead to worse

performance.

33

Figure 19: Network setup diagram for HomeRobot. We can run visualizations on a GPU-enabled
workstation, while running only the necessary code on a robot for low-level control and SLAM.

We solved this by having a clock on the robot side publish its time over ROS, and configure all

systems to use this ROS master clock instead of system time. This prevents the user from having to

worry about Linux time synchronization protocols like NTP when setting up the robot for the first

time.

G.3 Visualizing The Robot

Figure 20: Exploring a real-world apartment during testing. The robot uses Detic [26] to perceive
the world and update a 2D map (center) which captures where it’s seen relevant classes, and which
obstacles exist; detections aren’t always reliable, especially given a large and changing vocabulary of
objects that we care about. In the HomeRobot stack, we provide a variety of tools for visualizing and
implementing policies, including integration of RVIZ (right).

We use RVIZ, a part of ROS, to visualize results and progress. Fig. 20 shows three different outputs

from our system: on the far left, an image from the test environment being processed by Detic; in the

center, a top-down map generated by the navigation planner described in Sec. D.2; and on the right,

an image from RVIZ with the point cloud from the robot’s head camera registered against the 2D

lidar map created by Hector SLAM.

One advantage of the HomeRobot stack is that it is designed to work with existing debugging tools -

especially ROS [105]. ROS is a widely-used framework for robotics software development which

34

comes with a lot of online resources, official support from Hello Robot, and a rich and thriving

open-source community with wide industry backing.

G.4 Using The Stretch: Navigation vs. Position Mode

We leave API documentation to the HomeRobot code base, but want to note one other complexity

when using the robot. Stretch’s manipulator arm is pointed to the right of its direction of motion,

which means that it cannot both look where it is going and manipulate objects at once. This allows the

robot to be lower cost and fit the human profile - more information on the robot’s design is available

in other work [22].

However, it’s something important to consider when trying to control Stretch to perform various tasks.

We use stretch in one of two modes:

• Navigation mode: the robot’s camera is facing forward; we use reactive low-level control

for navigation; robot can rotate in place, roll backwards, and will reactively track goals sent

from the desktop.

• manipulation mode: the robot’s camera is facing towards its arm; we do not use reactive

low-level control for navigation and do not rotate the base. Instead, we treat the robot’s base

as an extra, lateral degree of freedom for manipulation.

This is especially relevant when grasping or placing; it means that, for our heuristic policies, the robot

transitions into manipulation mode after moving close enough to the goal, and may track slightly to

the left or the right, in order to act as if it had a full 6dof manipulator.

All in all, these changes make the low-cost robot more capable and easier to use for a variety of

tasks [12, 24, 61].

35

	Introduction
	Related Work
	Open-Vocabulary Mobile Manipulation
	Simulation Dataset
	Real World Benchmark

	The [height=14pt]figures/HomeRobot.pngHomeRobot Library
	Baseline Agent Implementation

	Results
	Limitations
	Conclusions and Future Work
	Acknowledgements
	Appendix
	 Appendix
	Extended Related Work
	Metrics
	Simulation Success Metrics
	Real World Success Metrics

	Simulation Details
	Object Categories Appearing in the Scene Dataset
	Episode Generation Details
	Improved scene visuals
	Action Space Implementation

	HomeRobot Implementation Details
	Pose Information
	Low-Level Control for Navigation
	Heuristic Grasping Policy
	Heuristic Placement Policy
	Navigation Planning
	Navigation Limitations

	Reinforcement Learning Baseline
	Action Space
	Navigation Skills
	Manipulation Skills

	Observation Space
	Training Setup
	Navigation Skills
	GazeAtObject
	PlaceObject

	Additional Analysis
	Number of steps taken in each stage by different baselines
	Performance on Seen vs. Unseen Object Categories
	Example DETIC zhou2022detecting predictions

	Hardware Setup
	Hardware Choice
	Robot Setup
	Visualizing The Robot
	Using The Stretch: Navigation vs. Position Mode

